Side-chain and backbone flexibility in protein core design.

نویسندگان

  • J R Desjarlais
  • T M Handel
چکیده

We have developed a computational approach for the design and prediction of hydrophobic cores that includes explicit backbone flexibility. The program consists of a two-stage combination of a genetic algorithm and monte carlo sampling using a torsional model of the protein. Backbone structures are evaluated either by a canonical force-field or a constraining potential that emphasizes the preservation of local geometry. The utility of the method for protein design and engineering is explored by designing three novel hydrophobic core variants of the protein 434 cro. We use the new method to evaluate these and previously designed 434 cro variants, as well as a series of phage T4 lysozyme variants. In order to properly evaluate the influence of backbone flexibility, we have also analyzed the effects of varying amounts of side-chain flexibility on the performance of fixed backbone methods. Comparison of results using a fixed versus flexible backbone reveals that, surprisingly, the two methods are almost equivalent in their abilities to predict relative experimental stabilities, but only when full side-chain flexibility is allowed. The prediction of core side-chain structure can vary dramatically between methods. In some, but not all, cases the flexible backbone method is a better predictor of structure. The development of a flexible backbone approach to core design is particularly important for attempts at de novo protein design, where there is no prior knowledge of a precise backbone structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A simple model of backbone flexibility improves modeling of side-chain conformational variability.

The considerable flexibility of side-chains in folded proteins is important for protein stability and function, and may have a role in mediating allosteric interactions. While sampling side-chain degrees of freedom has been an integral part of several successful computational protein design methods, the predictions of these approaches have not been directly compared to experimental measurements...

متن کامل

Repacking protein cores with backbone freedom: structure prediction for coiled coils.

Progress in homology modeling and protein design has generated considerable interest in methods for predicting side-chain packing in the hydrophobic cores of proteins. Present techniques are not practically useful, however, because they are unable to model protein main-chain flexibility. Parameterization of backbone motions may represent a general and efficient method to incorporate backbone re...

متن کامل

Backrub-like backbone simulation recapitulates natural protein conformational variability and improves mutant side-chain prediction.

Incorporation of effective backbone sampling into protein simulation and design is an important step in increasing the accuracy of computational protein modeling. Recent analysis of high-resolution crystal structures has suggested a new model, termed backrub, to describe localized, hinge-like alternative backbone and side-chain conformations observed in the crystal lattice. The model involves i...

متن کامل

High-resolution protein design with backbone freedom.

Recent advances in computational techniques have allowed the design of precise side-chain packing in proteins with predetermined, naturally occurring backbone structures. Because these methods do not model protein main-chain flexibility, they lack the breadth to explore novel backbone conformations. Here the de novo design of a family of alpha-helical bundle proteins with a right-handed superhe...

متن کامل

Motif-directed flexible backbone design of functional interactions.

Computational protein design relies on a number of approximations to efficiently search the huge sequence space available to proteins. The fixed backbone and rotamer approximations in particular are important for formulating protein design as a discrete combinatorial optimization problem. However, the resulting coarse-grained sampling of possible side-chain terminal positions is problematic for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 290 1  شماره 

صفحات  -

تاریخ انتشار 1999